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1 Medium Elastic Properties

Corresponding to this subject theory is based on concept of continuous medium. Comprehensive
description of used terms and properties is provided in
http://en.wikipedia.org/wiki/Elastic_modulus . From viewpoint of geoscientist is useful presenting
them in terms and properties which can be derived and/or measured at application of methods it
uses.

Vp (α) – compression wave velocity;
Vs (β) – shear wave velocity;
Rho (ρ) – density.

Shear modulus or modulus of rigidity (G or μ): μ = ρ*β2

P-wave modulus M: M = ρ*α2

http://en.wikipedia.org/wiki/Elastic_modulus
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Lambda (λ) or Lame’s first parameter: λ = ρ*( α2+2β2)

Bulk modulus K: K = M-(4/3)G

Poisson’s ratio (ν): ν = ( α2-2β2)/ 2( α2+β2)

2 Wave equation theory (2D case)

Equations of wave propagation in elastic medium are derived from the basic equations below:
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 - strain tensor and its relationship with displacement.

jiij   - stress tensor.

ijlkjiklklijijkl cccc  - 4-order symmetric elasticity tensor.

iw - is the displacement of medium particles.

Velocity-stress wave equations for elastic medium are derived from equations above by converting
displacements to velocities:
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where iu is the vector of the displacement velocity.

Elasticity tensor ijklc has 81 components. But, because of its symmetry, only 21 components are

independent. Tensor ijklc can be conveniently described by symmetric 6x6 matrix mna .

Conventionally the relationship between the indices (m or n) of 6x6 symmetric matrix mna

and pairs of the indices (i,j) or (k,l) of 4-order tensor ijklc  is denoted as:  1↔11, 2↔22, 3↔33, 

4↔23,  5↔13, 6↔12. 

For isotropic medium, elasticity matrix mna has notation
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In Tesseral package, wavefield calculations are implemented basing on different formal
approximations to physical medium.

2.1 Scalar Modeling

In this case, the physical properties of the medium are described by space-varying velocity of

compression (acoustic) wave  31 , xxvv  in the XZ-plane and the wave field is described by

displacement velocity vector  31 ,uuu and pressure .p

This approximation of physical medium corresponds to the propagation of acoustic waves in the
medium with constant density (normally, density ρ is assumed to 1) and the shear-wave velocity Vs
is assumed to be 0, i.e., the case of ideal liquid with constant density.

The wavefield in the ideal liquid with constant density can be described by the system of
differential equations:
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In conventional way, the scalar equation is given by pressure (stress) and divergence (dilatation),
which measures the expansion or compression of local medium volume.

Let’s differentiate equation 1 with respect to х1 , differentiate equation 2 with respect to х 3, and
differentiate equation 3 with respect to t. Then we obtain:
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By substituting equation (4) and (5) into (6), we obtain conventional expression of scalar equation
in terms of pressure
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Taking into account that from equation (3) we can obtain:
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

is the displacements vector of medium particles, and  is divergence measuring the
increasing/decreasing of local medium volume. For constant v, we obtain:
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This is the notation of scalar equation in terms of divergence. If  соnst, 2 must be more
complex function, but not . This means that equation (8) differs from equation (7) for pressure.
Let’s re-write scalar equation in form of particles displacement. To this end, let’s differentiate
equation (1) and equation (2) with respect to t . We obtain:
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Let’s differentiate equation (3) by 1x
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Let’s differentiate equation (3) by 3x
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Combining equations (9), (11) and (10), (12), we obtain
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System of equations (13) and (14), written in terms of particle velocity vector which usually are
measured in the field observations, differs from equation (8), which is usually applied in wave-
equation migration procedure. Equation (8) is the basis for most seismic processing procedures.
Equation (13) and (14) are an approximation to the wave equation in terms of the particle
displacement velocity.

2.2 Acoustic modeling

In this case, medium properties are described by 2-D compression-wave velocity  31 , xxvv  and

density  ., 31 xx

Acoustic wave equation is described by vector of displacement velocity u and scalar fields of
pressures p by the system of differential equations:
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As in case of scalar modeling (see 2.1), let’s differentiate equation (15) with respect to 1x , equation

(16) with respect to 3x , and equation (17) with respect to t , then we obtain:
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By substituting (18) and (19) into equation (20), we obtain the acoustic equation in terms of
pressure:
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As seen from the equation above, spatial derivatives of density appears. If the spatial derivative of
density is close to zero, then the acoustic equation is reduced to scalar equation.

2.3 Elastic isotropic modeling

Properties of isotropic elastic medium are described by 3 spatial-varying parameters: compression-

wave velocity of  31 , xxv p , shear-wave velocity  31 , xxvs and density  ., 31 xx
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From parameters , andvv sp , Lame’s parameters can be calculated as  22 2 sp vv   and
2
sv  , which correspond to elastic constants ,13 a 55a . In case of isotropic elastic

approximation, the relationship between the displacement velocity vector  31 ,uuu and the

stress tensor  3,1, jiij is given by the system of differential equations:
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2.4 Elastic anisotropic modeling

Here, the medium property is assumed to be monocline type of anisotropy, where the plane

 31 , xx is the symmetry plane.

The wavefield in the plane  31 , xx depends only on spatial-varying elastic constants  5,3,1, jiaij

and density  .

For time-domain anisotropic elastic modeling, the displacement velocity vector  31 ,uuu and the

stress tensor  3,1, jiij are related by system of differential equations:
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The elastic constants ija of anisotropic medium are calculated based on the assumption that the

medium consist of transversally-isotropic medium with inclined symmetry axis (TTI), which can
include up to 3 fracturing systems, located in parallel planes.
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The physical properties of TTI medium are defined with 7 parameters:  - density; sp vv , - velocities

of propagation of qP and qSV waves along symmetry axis of TTI medium;  ,, - Thomsen’s

anisotropy parameters; - angle of inclination of symmetry axis with respect to vertical direction.

Each fracture system is described with 3 parameters: fracture intensity )()( , i
t

i
n  (normal and

tangential weakness) and angles of inclination with respect to vertical directioni (i  3).

Computation of coefficients of total elastic matrix  5,3,1, jiaij is done in a few steps.

For transversally isotropic medium with vertical symmetry (VTI), the elasticity matrix is given as

2
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2
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Let’s assume the resultant elasticity matrix is
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wave propagation in the symmetry plane of monocline anisotropic medium, only the
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 231225 2sin ccf   ;

   33115533131135 2sin
2

1
24sin

4

1
ccccccf  

     5533115533131155 2sin
2

1
24cos1

2

1
cccccccf   .

To incorporate each fracture system into elasticity matrix, fracture intensity )()( , i
t

i
n  are firstly

transformed into coefficients of 6x6 matrix:

     )()()()(
11 2cos1

2

1
4cos1

8

1 i
ni

i
t

i
ni

i KKKf   ;

     )()()()(
33 2cos1

2

1
4cos1

8

1 i
ni

i
t

i
ni

i KKKf   ;

    )()()(
55 4cos1

2

1
4cos1

2

1 i
ti

i
ni

i KKf   ;

 )()()()(
15 4sin

4

1
2sin

2

1 i
t

i
ni

i
ni

i KKKf   ;

 )()()()(
35 4sin

4

1
2sin

2

1 i
t

i
ni

i
ni

i KKKf   ;

  )()()(
13 4cos1

8

1 i
t

i
ni

i KKf   .

Where
)1( )(

11

)(
)(

i
n

i
ni

n
a

K



 and

)1( )(
44

)(
)(

i
t

i
ti

t
a

K



 .

Then, each of obtained matrixes Fi is added into matrix F. The resultant matrix G =F + F1 + F2 + F3 is

inverted, i.e., 1GA  . The values of elements of inverse matrix are then used as the coefficients in
the differential equations, which describe the wave propagation in anisotropic medium with
fracture systems.

For the medium with only one system of fracture whose plane is perpendicular to the OX axis, the
elasticity matrix has the following form:







































)1(00000

0)1(0000

00000

000)1()1()1(

000)1()1()1(

000)1()1()1(

66

55

44

2
332313

23
2

2212

131211

t

t

nnn

nnn

nnn

a

a

a

aaa

aaa

aaa





A
(27)
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where ija is the elasticity coefficients of surrounding medium, and 1112 / aa .

For the medium with monocline type of anisotropy with X-Z symmetry plane, Elasticity matrix has
the form:





























6646

55352515

4644

35332313

25232212

15131211

0000

00

0000

00

00

00

aa

aaaa

aa

aaaa

aaaa

aaaa

A (28)

Parameters n and t have different values for fractured medium with gas-saturated or fluid-

saturated pore.

Let’s denote
2

2

33

55

P

S

V

V

c

c
g  , and e is the fracturing density in the background medium, then for

fractured medium with gas-saturated pores:

 gg

e
n




13

4
, (29)

 g

e
t

233

16


 .

For medium with fluid-saturated fractures:

0 n , (30)

)23(3

16

g

e
t


 .

Presence of fractures leads to seismic anisotropy, whose symmetry axis is normal to the plane of
fractures. If background medium is isotropic, then one can determine Thomsen’s parameters by
formula:

  ngg  12 , (31)

  tngg  212 ,

2
n ,

 nt gg  2 .

For Hudson’s model, one can compute Thomsen’s parameters for gas-saturated pores:

e
3

8
 (32)

 
  












gg

gg
e

123

21
1

3

8
 ,
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 g

e

233

8


 ,

 
  












gg

gg
e

123

21

3

8
 .

)3(3

8

g

e


 .

And if pores are filled with fluid, then

0 ; (33)

)23(3

32

g

e


 ;

)23(3

8

g

e


 .

Those formula can be resolved to obtain n and t , and thus be used for determining the

intensity of fracturing from Thomsen’s parameters.

2.5 Connection of anisotropy parameters and elastic properties

In Tesseral package, each layer usually represents homogeneous anisotropic medium.

Generally, anisotropy is monoclinal with symmetry axis coinciding with the plane of computations.
The anisotropic parameters are taken into account in the Anisotropic wave-equation
approximation.

For fracturing systems in the transversally isotropic medium (TI), the symmetry axis of TI-medium
or the normal to planes of fracturing are assumed to be within the computation plane.

There is a detailed explanation of the parameter Dn and Dt is explained in the article of Bakulin,
Grechko and Tsvankin: Estimation of fracture parameters from reflection seismic data’, Geophysics,
2000, 65, N6, 1788-1830”. In this article, the authors are showing additional literature. Just to keep
it brief, the parameters of Dn, Dt (“weakening”) are showing the level of the “sliding” along the
fractures. The larger these parameters are, the more intense the fracturing.

The alpha angle is determining the tilt of the planes of the fracturing system, for example:

Alpha = 0 degrees: the plane of the fractures are parallel to YZ plan. This is vertical fracturing.
Alpha = 90 degrees: the plane of the fractures is parallel to XY plane. This is the horizontal
fracturing

The Dn, Dt parameters are defined in the interface through percentages, so in order to define
Dn=0.4, you need to get the number 40 in the parameters window.

In Tesseral 2D, we are looking only at plane problem – meaning that the planes of all systems are
perpendicular to the calculations of XZ. However, in Tesseral 2.5D the modeling can be defined with
any spatial tilt. It is done by choosing the parameters in the “3D extension” dialog in standard
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Tesseral 2D. Then, there is an option to define the azimuth of fracturing in spherical system of co-
ordinates on the Azimuth window.

The orthorhombic anisotropy can be formed by different methods, for example:

1) In isotropic media (in this case, the values of the epsilon, delta and gamma are equal to 0!) ,
we can set two or three mutually-orthogonal fracturing systems using Dn, Dt, Alpha and
Azimuth parameters for each fracture system, or

2) VTI media (which is defined the anisotropy using epsilon, delta and gamma) to locate two
mutually orthogonal vertical fracturing systems – defining them through epsilon, delta and
gamma). Inside this VTI media, we can locate two mutually orthogonal vertical fractured
systems defined as Dn, Dt, Alpha and Azimuth

In any case, in order to define the orthorhombic model, we need to use the dialog with fracturing.
The Thomsons parameters are related only to the containing media. After the fracturing is entered
you cannot – most of the time – describe this model with regular Thomson’s parameters.

Sometimes, the Thomsons parameters can be generalized for a more generic scenario – but we do
not do this. Neither weak, nor strong anisotropy – if it is not a TI anisotropy – can not be described
using regular Thomson’s parameters.

On other hand, if the anisotropy is a TI anisotropy, then - regardless of how strong it is – it can be
described by Thomsons parameters exactly.

In order to use the parameters from the elasticity matrix directly, they either need to be re-
calculated in the parameters we are using, or to modify Tesseral or / and Tesseral 2,5D so the
elasticity matrix parameters can be imported directly. It was already discussed previously.

Anisotropy parameters are entered in 2 steps:

1) TI-medium anisotropy is described by entering Thomsen’s coefficients  ,  ,  and angle  of
symmetry axis with respect to the vertical direction.

2) For each fracturing system, users then enter the parameters n and t (no units) and inclination

angle of fracture plane () with respect to the vertical direction.

In Tesseral package, users can add up to 3 fracturing systems into the background isotropic or TI-
medium with tilted symmetry axis.

As known, non-dimensional Thomsen’s parameters are defined according to formulas below:

,
2

,
)(2

)()(
,

2 44

4466

443333

2
4433

2
4413

33

3311

c

cc

ccc

cccc

c

cc 








 

where Cij is symmetric 6х6 matrix, containing the coefficients of elasticity tensor.  

Thomsen’s parameters can be found by core measurements or in literature, or obtained by

measuring kinematic parameters of wave field VqP( ), VqSV( ), VqSH( ), VCDP( ). Generally,
Thomsen’s parameters vary from -0.5 to 0.5.
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Presence of fracturing system in parallel planes, perpendicular to the computation plane is

changing the anisotropy model. In general case, it becomes monoclinal. Parameters n and t

characterize the intensity of fracturing and thus influence the kinematic and dynamic properties of

the wave field. Parameters n and t depend on the fractures density and material filling the pores.

Let’s denote
2

2

qP

qSV

V

V
g  and e is the fracturing density, which equal to the average volume of pore

space on a unit of the rock volume.

Parameter t can be determined from formula

)23(3

16

g

e
t


 ,

And n depend on the material of filling the pores. If it is gas, then

)1(3

4

gg

e
n


 ,

If it is a fluid, then n=0.

Presence of vertical fracturing system in isotropic background medium, leads to seismic anisotropy,
and medium becomes horizontally-isotropic (HTI) with Thomsen’s parameters depending on the
material filling the pores.

If pores are filled with gas, then

3

8e
 .















)1)(23(

)21(
1

3

8

gg

gge
 .

)3(3

8

g

e


 .

And if poses are filled with fluid, then

0 .

)23(3

32

g

e


 .

)23(3

8

g

e


 .

There are different ways of linking Thomsen’s parameters and fracture system with the parameters
used in wave equation.

Many references can be found in the papers of A. Bakulin, V. Grechko, I. Svankin:

Estimation of fracture parameters from reflection data - Part 1,2,3. GEOPHYSICS, VOL.65,
NO.6 (2000) p.1788-1830.



Wavefield Theory for Multiparameter Medium in Tesseral

13
© 2013 Tesseral Technologies -User Documentation -Advanced learning-

3 Using Q-factor at Energy attenuation estimations

Absorption decrement A measure the attenuation of the wave on one wavelength. The quality
factor can be expressed as Q=1/A (smaller Quality factor means stronger absorption).

Quality factor Q can also be defined as

Q=F0/2α,  

where F0 is frequency of the signal and α is the attenuation parameter and represents the rate of
exponential decay (a quantity is said to be subject to exponential decay if it decreases at a rate
proportional to its value) of the wave energy (e.g., after an initial impulse). A higher quality factor
means a smaller attenuation.

The free encyclopedia http://en.wikipedia.org/wiki/Q_factor

Exponential decay means that a quantity decreases at a rate proportional to its value.
Mathematically, this can be expressed as the following differential equation, where N is the
quantity and λ is a positive number called the decay constant. 

The solution to this equation (see below for derivation) is:

Here N(t) is the quantity at time t, and N0 = N(0) is the initial quantity at time t = 0.

3.1 Solution of the differential equation of exponential decay

The equation that describes exponential decay is

After re-arranging,

http://en.wikipedia.org/wiki/Q_factor
http://upload.wikimedia.org/wikipedia/commons/7/7a/Plot-exponential-decay.png
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After integrating, we have

where C is the integration constant, and hence

where N0 = eC is obtained by evaluating the equation at t = 0, as N0 is the quantity at t = 0.

This equation is commonly used to describe exponential decay. Any the decay constant λ is 
sufficient to characterize the decay. The notation λ for the decay constant is a remnant of the usual 
notation for an eigenvalue. In this case, λ is the eigenvalue of the opposite of the differentiation 
operator with N(t) as the corresponding eigenfunction. The unit of decay constant is s-1.

Note: In general case, quality factor Q depends on the frequency content of the seismic wave
propagating in visco-elastic medium, which is simulated using corresponding visco-elastic wave-
equation approximation. Quality factor Q affect the velocity dispersion (wave is scattered or
distorted as function of frequency). Usually, it is assumed that frequency band is narrow (for the
wavelet’s frequency band used in the numerical modeling is narrow). And under this assumption,
the attenuation effect is taken into account by using the quality factor at peak frequency F0 of the
source wavelet. It may be called as frequency-band independent or Fp-approximation of energy
attenuation.

For some particular modeling tasks such approximation may be considered as too simplifying this
wave propagation phenomenon, when there is need to study influence of the medium absorption
at deeper level of modeling of frequency dependent influence of attenuating properties (Q-factor
parameter) of the medium. The visco-elastic approximation allows to model such complex effects
of wave propagation as frequency dependent wave attenuation and velocity dispersion caused by
absorbing properties of the medium.

4 Modeling wave fields in 2D visco-elastic isotropic medium

Note: The numerical computation of seismic wavefield in linear viscoelastic media is complicated by
the existence of convolution integrals in the governing equations. The problem can be solved by
approximating each continuous relaxation spectrum by a discrete one, whose corresponding
complex modulus is a rational function of frequency. The convolution integrals can then be
eliminated by introducing a sequence of variables, with each satisfying a first order differential
equation in time (Day and Minster, 1984; Emmerlich and Korn, 1987; Carcione et al., 1988). The
resulting system of governing differential equations can then be solved numerically in various ways.

During wave propagation in a real geological medium, energy loss is caused by internal friction.
Intensity of energy loss is characterized by Q value. For a plane wave with frequency  propagating
along x direction with velocity v , the amplitude of this plane wave can be calculated as:

   (0) exp 0 exp
2 2

t x
a x a a

Q vQ

    
      

   
,

Where x vt ,  a x is the wave amplitude in location x or at time t .
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This formula means that, after propagating over a period
2

T



 or a wavelength

2 v



 ,

amplitude of plane wave is attenuated by exp
Q

 
 
 

times.

Rock physics study shows that in broad frequency range such as 3 210 10  Hz, Q value practically is

constant.

Calculation of wave field for 2D absorbing isotropic medium is based on solving following
differential equation by finite-difference method

3

13

1

111

xxt

v













 
 .

3

33

1

133

xxt

v













 
 .

3 311 1
11

11 3 3

2
L

l

l

v vv
r

t x x x


 



   
    

    
  

13 31
13

13 1

L
l

l

vv
r

t x x






  
   

   


33 31 1
33

11 3 1

2
L

l

l

vv v
r

t x x x


 



   
    

    
  

where

2
pV  , 2

sV  ,
1

1
PL
l

l l

L




 



 
   

 
 ,

1

1
SL
l

l l

L




 



 
   

 
 ,

p
l , s

l , l are relaxation times for l-i absorption law (l=1,…,L).

For variables l
ijr are used following formulas

   3 311 1
11

1 3 3

1
2

l
l l l

l

v vr v
r

t x x x

   


    
        

     
 

 13 31
13

3 1

1l
l l

l

r vv
r

t x x

 


   
      

    
 ,

   33 31 1
33

1 3 1

1
2

l
l l l

l

r vv v
r

t x x x

   


    
        

     
 

where
P

l l

l






 


 ,

S
l l

l






 


 .

Relaxation times p
l , s

l , l are tuned by the program in a way to secure independency of PQ and

SQ with respect to frequency in a wide range. To run modeling with absorption, users need to

input signal peak frequency 0f , values of PQ and SQ for each polygon and the number of

absorption laws L.
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Inside the program, relaxation times is automatically calculated to ensure that frequency range

,beg end    will be evenly covered in the logarithmic scale by frequencies 1,..., L  and for each of

them, relaxation times are calculated as

2
0 0

1 1 1
1l

l P PQ Q




 
    

 
,

2

1p
l

l sl


 

 ,

0
2

0

1s l sl S
l

l S l sl

Q

Q





  





.

The program is using values 0

1

8
beg  , 08end  . o is the peak frequency of the source

wavelet.

Parameters 0PQ and 0SQ are consequently tuned in a least-square sense by minimizing the

following objective functions P and S :

  
02

2

beg

P P PQ Q d




    ,

  
02

2

beg

S S SQ Q d




    ,

where

 
  
  

Re

Im

P

P

P

q
Q

q





 ,

 
  
  

Re

Im

S

S

S

q
Q

q





 ,

and

 
1

1
1

1

pL
l

p
l l

i
q L

i










  


 ,

 
1

1
1

1

sL
l

s
l l

i
q L

i










  


 .

Presence of absorption causes velocity dispersion or frequency-dependant velocity  pv 

and  sv  . For ideal caseQ const , these functions are logarithmic

   0

0

1 lnP P P

P

V V


 


  
    

  
,

   0

0

1 lnS S S

S

V V


 


  
    

  
,

where
0p and

0s are some fixed frequencies.

The modeling is based on absorption laws

   ReP P PV V q 
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   ReS S SV V q 

Because of    0 0 1P Sq q  , so  0P PV V ,  0S SV V - velocities specified in a medium model

polygons.

4.1 Dependency of  Q  and  V  on angular frequency – Velocity

Dispersion

For different types of waves and number of absorption laws 1,3,5L  , the dependency of  Q 

and  V  on angular frequency is shown on the figure below, where 0 2 40Hz   ,

2000PV  m/s and 1100SV  m/s are used.
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From math physics theory can be defined relation between velocity dispersion and wave energy
attenuation (Q-factor):

1

1
(1) ( ) 1 ln( )

2
c c

Q




 

 
  

 

or relating to Q:

1
1 1 0

0

(2) ln( ) / ( ( ) ( ))Q c c c


  


 

where

1 ( 2 )c c    - velocity of compression waves (no attenuation, frequency independent)

ω – frequency 
Q – Quality factor
с(ω) – compression wave velocity at frequency ω 

For example, if:
ω1=5,000 Hz 
ω0=250 Hz (ω1/ω0=20) 

Vp1 ~5KHz Vp2 ~250Hz ∆Vp (%) Q

a) 2500 m/s 2300 m/s 9% 10

b) 2500 m/s 2000 m/s 25% 5

Then for:

Case a) Case b)

C1~=2300 m/s C1~=2000 m/s

C(ω1)=2500 m/s C(ω1)=2500 m/s 

C(ω0)=2300 m/s C(ω0)=2000 m/s 

Q=(2300*2.9)/(3.14*200)= ~6600/630 ~=10 Q=(2500*2.9)/(3.14*500)= ~7500/1500 ~=5

4.2 Damping Mechanisms

Damping mechanism for viscoelastic medium can be illustrated using the picture below:

Let’s press and then release plates A and B. Springs work to return to initial state, but pistons slow
down this process. The L number of damping mechanisms (here) is 5.
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For each frequency, each defined mechanism has maximum relaxation time (in e times).
Conventionally this time is called relaxation time for a given mechanism. There are 2 types of
relaxation time: Strain relaxation time and Stress relaxation time.

Attenuation for given frequency is defined by Q-factor (Quality factor) which is equal to sum of
attenuations of all damping mechanisms for a given frequency.

To make it working properly, it is necessary to fine-tune N (here, 5) relaxation times so that, for
each frequency, Q-factor equals approximately to the defined one (as a medium property).

Stress relaxation times only can be fitted using special procedures, and the remaining ones then can
be calculated using corresponding equations. Once tuned, those relaxation times can be used for all
other cases.

Then, the viscoelastic wave equation for 1 damping mechanism can be extended to the case of N
damping mechanisms case.

4.3 Summary

Tesseral software uses 2 methods to take into account the effect of seismic absorption:
1. The first method (Fp-attenuation)is to take into account amplitude attenuation by using

formula   0
0 exp

2

t
a t a

Q

 
  

 
, where 0 is a signal peak frequency. Implementing

absorption in such way makes calculations very fast, but the signal spectrum and its shape
will not change and velocity dispersion is not taken into account. This method is an
approximation and it can be used as a fast way to evaluate the absorption effect, especially
for conventionally used in seismic modeling signals which have narrow band of frequencies.
See also chapter Using Q-factor at Energy attenuation estimations.

2. The second method (visco-elastic) takes into account mechanics of seismic absorption more
accurately. It correctly calculates signal spectrum, amplitude, velocity dispersion and signal
time registrations. This approach can be used for modeling the wave fields in complex
geological conditions such as fracture zones. Because dry, water-saturated and oil-saturated
fractures and layers have different absorption properties, it is possible to investigate their
influence on the wave field.

A value of L (number of damping mechanisms) has been added as one of the user input
parameters in Tesseral package. It is recommended to use L=3. Time step and spatial
intervals are automatically calculated by the program using the same algorithms as without
absorption.
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5 Gassman’s model of porous medium

Comprehensive description of Gassman’s equation is provided in
http://en.wikipedia.org/wiki/Gassmann's_equation.

Below are presented some formulae and descriptions relating to used in Tesseral conversions from
properties of the containing rock matrix (skeleton) and its liquid pore content into bulk rock
properties Vp, Vs and Pho.

  sf ФФ   1

where  is the density of porous medium. f is the density of fluid, s is the density of skeleton and

Ф is the porosity in percentage.

 
  2

2

//Ф1Ф/

/1

ssf

s

KKKK

KK
MM




 .

,, KM is modules of planar deformation, omni-directional compression and shifting in the dry

rock. ,, KM is the modules of planar deformation, omni-directional compression and shifting in the

fluid-saturated porous rock.
3

23  
K is the module of omni-directional compression in the fluid-

saturated porous rock. sK is the module of omni-directional compression of skeleton (rock mineral).

 2M ;

  1
Ф501/


sKK is the density of porous medium.

Fig.1 Dependencies VP/VS on VP for rocks of different lithology

http://en.wikipedia.org/wiki/Gassmann's_equation


Wavefield Theory for Multiparameter Medium in Tesseral

© 2013

6 3D

Matrix m
of reflec
absorpti

To chara
plane bo

f
j

dz

d


where f

Propaga

which de

At the tr
of stack
then the
for a sta

exP 

Let’s den

 

Fig.2. Velocity VP, as function of water-saturation coefficient, for oil- and gas-saturated
sandstones (broken line) at depth of 600m, 1800m and 3000 m.
Vp=2700 m/s (gas), Vp=2900 m/s (water). Accordingly for such velocities:1/γ =1,45 (gas),
21
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AVO modeling procedure

ethod is the foundation for studying the 3D AVO functionality, which calculates the tables
tion and transmission coefficients of interferential packs for stack of anisotropic layers with
on, as well as their phase delays.

cterize the reflection and refraction properties of a stack of anisotropic layers with parallel
undaries, particle motion in each layer is described by a system of 6 differential equations:

Af ,

  ))(exp( 2211332313321 xpxptjuuu
T

  is the plane wave.

tion matrix A depends on elasticity coefficients ija , density  and slownesses 1p and 2p ,

termine the direction of wave propagation.

ansmission through layers’ boundaries, solution f remains continuous. If medium consists
of layers with thicknesses h1 ,…,hk and A1,…,Ak is the propagation matrix for each layer,
operator, which calculates the wavefield from first boundary to the last one (propagator

ck of layers), can be given as:

)exp(...)p( 11AA hjhj kk   .

ote 









2221

1211

PP

PP
P , where ijP -is the 3х3 matrix. 

1/γ=2,0 (water). And corresponding shear velocities: Vs=1860 m/s (gas), Vs=1450 m/s
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Solving the system of equations kfPf 1 relatively to dissipated (outgoing from stack of layers)

waves, we obtain formula for the dissipation matrix:

















 




EP

0P

0P

EP
S

21

11

1

22

12 .

Elements of matrix S are reflection and transmission coefficients of plane waves for all types of
waves for the stack of layers.

In the 3D AVO module, the coefficients of reflection and transmission of plane waves from a stack
of layers with horizontal boundaries are calculated by using the matrix of Haskell-Thomson method.
The program forms tables of reflection and transmission coefficients depending on incidence angle
and frequencies of seismic wave dissipating on those boundaries. Then, the stored data are output
in form of graphs.

To calculate the dissipation matrix for a stack of layers allocated between zero and (n+1)m half-
spaces, firstly the propagator matrix H for this stack is defined, which relate the amplitude of

propagating waves from the first boundary to last one according to the formula 11 wHwn


 , where

02
1
1 ... EPPEH nn


 , and 1 iiii EEP (propagator of ith layer).

The dissipation matrix S allows for calculating stack of amplitudes of six incoming waves in
amplitudes of outgoing six waves. For one boundary, dissipation matrix S consists of reflection and
transmission coefficients, and is defined according to the equation:





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

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



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
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



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






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








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
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464544

363534

262524

161514

hhh
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hhh

hhh
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hhh

S .

In the program, for the set range of incidence angles and frequencies, a dissipation matrixes S are
determined and then the amplitudes and phases of reflection and-transmission coefficients are
calculated for each boundary.

Propagator of each layer is calculated under the assumption that the medium could have TTI-
anisotropy with an arbitrary inclination of a symmetry axis. Inside this medium, up to 3 fracturing
systems can be added, which is characterized by the intensities and inclination angles. All these
parameters are converted into elasticity coefficients. As a result, the medium generally becomes
anisotropic without symmetry (i.e. triclinic). Fracturing is taken into account by using formulas by
Bakulin et al., (see reference). Frequency-dependent absorption and velocity dispersion is taken
into account according to formulas by Aki & Richards (see reference). Propagator matrix for an
anisotropic layer is calculated on the basis of the equations given by Stroh (1962).
Size of this preview: 333 × 598 pixels. Other resolution: 133 × 240 pixels.

http://upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Seismic_Wavelet.jpg/333px-Seismic_Wavelet.jpg
http://upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Seismic_Wavelet.jpg/133px-Seismic_Wavelet.jpg
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7 Wavelets and Signals

From http://en.wikipedia.org/wiki/Wavelet

A wavelet is a wave-like oscillation with amplitude that begins at zero,
increases, and then decreases back to zero. It can typically be
visualized as a "brief oscillation" like one might see recorded by a
seismograph. Generally, wavelets are purposefully crafted to have
specific properties that make them useful for signal processing.
Wavelets can be combined, using a "reverse, shift, multiply and
integrate" technique called convolution, with portions of a known
signal to extract information from the unknown signal.

From http://en.wikipedia.org/wiki/Seismic_source

A seismic source is a device that generates controlled seismic energy
used to perform seismic surveys. A seismic source can be simple, such
as dynamite, or it can use more sophisticated technology, such as a
specialized air gun. Seismic sources can provide single pulses or

continuous sweeps of energy. Both types of seismic sources generate
seismic waves, which travel through a medium such as water or
layers of rocks. Some of the waves then reflect and refract and is
recorded by receivers, such as geophones or hydrophones.

There must be done additional parameterization in seismic
(numerical) modeling for wavelet (of particular type) to become a
signal. Peak frequency (on picture - violet arrow) (of the wavelet),
maximum amplitude (red arrow) and phase (green arrow) must be
defined.

Reference: analytical wavelets

Rikker wavelet equation:

)exp()21(),( 22
0

222
0

2
0 tftfftf  

.

Rikker wavelet Fourier transformation:
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where f0 – central signal frequency.

Puzirov wavelet equation:

)2cos()exp(),,,( 00
22

0
2

00   tftfftf
.

Puzirov wavelet Fourier transformation:
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where f0 – signal central frequency, 0 – phase shift of the signal relating to zero-phase,

number  – determines how fast curvature of the signal is approaching zero.

http://upload.wikimedia.org/wikipedia/commons/b/b0/Seismic_Wavelet.jpg
http://en.wikipedia.org/wiki/Wavelet
http://en.wikipedia.org/wiki/Seismic_source
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8 Complex Sources

8.1 Force f of arbitrary direction

8.1.1 3D case

Vector  00000 cos,sinsin,cossin f is determined by two angles:

1) Tilt angle of the force vector f 0
0 900  and azimuth vector of the force vector

0
0 3600  relatively to axis OX1:

In the coordinate system  321 ,, xxx the force vector f has coordinates  321 ,, ffff , where















03

002

001

cos

sinsin

cossin







f

f

f

.

Compression P -wave and shear SV and SH -waves have direction characteristics:

24 p

p
V

L


rf 
 ,

24 S

SV
V

L


θf 
 ,

24
SH

S

L
V




f φ
,

where
  cos,sinsin,cossinr - polarization vector of P -wave (direction to receiver),

  sin,sincos,coscos θ - polarization vector of SV -wave,

 sin ,cos ,0  φ - polarization vector of SH -wave.

Vectors r , θ and φ are reciprocally perpendicular unitary vectors, at this vector r is directed on

receiver, i.e. receiver has azimuth  and is tilted by angle  .

Generation of signal is executed by addition of increments to the displacement velocities

  001 cossin tsu  ,

  002 sinsin tsu  ,

  03 costsu  .

where  ts - source signal.

1x

3x

0

2x

1x

0
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8.1.2 2D Case

In 2D force vector f is determined by angle 0 of force to the vertical only.

In this case azimuths 00  and directionality characteristics are reduced to simple formulae:

 
2

0

4

sin

p

p
V

L


 
 ,

 0

2

cos

4
SV

S

L
V

 




 .

Generation of signal in the program is realized by addition of increments by time to displacement
velocities:

  01 sin tsu  ;

  03 costsu  .

8.2 Sources of coupled forces type

In 2.5D, as well as in 3D case, all kinds of couple force sources may be applicable. Those are
sources, creating moments, as well as stretching and squeezing tensions. Latter are called vector
dipoles.

There are possible 9 pairs of forces ijM )3,1(  ji . But, due to the law of conservation, pairs ijM

and jiM , creating the same magnitude moments occur simultaneously, i.e. matrix M is always

symmetric. Therefore, we can restrict the 6 pairs )31(  ji .

At continuation of the wave field in time, equations

q

p

pqmn
mn

x

u
c

t 







,



where mn - stresses tensor, pqmnc , - elasticity tensor, pu - vector of displacement velocities. At 2.5D

modeling differentiations
2x

u p




are replaced by multiplying by the number 2jk where 2k -spatial

frequency by direction 2x , and 1j .

For determining of couple of forces ),( 00 nm , where 00 nm  formulae

q

p

pqmn
mn

x
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t 


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


,



at 0mm  and 0nn  is replaced by formulae

dt

tds

x

u
c

t q

p

pqnm

nm )(
,00

00 









where )(ts - source signal.

8.3 Source of couples forces directed along fault

8.3.1 3D Case

Source of coupled forces which is directed along the fault is determined by the normal n to the
fault and jump of displacements udirected along the fault. Vectors uand n are always mutually
perpendicular, i.e. 0 nu .

The vector n defined by the angle to the vertical 0900  n and azimuth 03600  n .



Wavefield Theory for Multiparameter Medium in Tesseral

26
© 2013 Tesseral Technologies -User Documentation -Advanced learning-

The displacement vector u is determined differently depending on value of n .

If 090n , i.e. if the fault is not vertical, then vector u is determined by azimuth 03600  u .

In this case, the tilt angle of the vector u is determined by formulae:

 nu

n
utg











cos

ctg
.

If 090n , i.e. the fault is vertical, then vector u is determined by the tilt angle 03600  u .
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At this,  uuuuu  cos,sinsin,cossinu , где 090 nu  .

Directionality characteristics for the couple of forces are determined by formulae

34 p

P
p

V

a
L


 ,

34 S

SV
SV

V

a
L


 ,

34 S

SH
SH

V

a
L


 ,

where
   nrur  2Pa

       uθnrnθur SVa ,

       SHa        r u φ n r n φ u ,

  cos,sinsin,cossinr - polarization vector of P wave (direction to receiver),

  sin,sincos,coscos θ - polarization vector of SV wave,

 sin ,cos ,0  φ - polarization vector of SH wave.

Generation of oscillations is realized by adding increments to the components of the stress tensor

ij :

  qpijpqij unctS  .

Here ijpqc - components of elasticity tensor in place of the source of oscillations.

In matrix notation, which conventionally designate one pair of indices by one index   11,1  ,

  22,2  ,   33,3  ,   43,2  ,   53,1  ,   62,1  , for isotropic medium this equation can be

denoted as
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where

 2332211  ccc ,  231312 ccc ,  665544 ccc , , - Lame parameters,

nnuunu  cossincossin11  ,

nnuunu  sinsinsinsin22  ,

nunu  coscos33  ,

unnnuununu  cossinsincossinsin2332  ,
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unnnuununu  coscossincoscossin1331 

uunnnnuununu  sinsincossinsinsincossin1221 

8.3.2 2D Case

Double couple is determined by the tilt angle of the normal n to the fault  nn  cos,0,sinn .

Displacement vector u is directed along fault and perpendicular ton . It has

coordinates  nn  sin,0,cos u .

Directionality diagrams of compression and shear waves are described by formulae

 
3

sin 2

4

n

p

p

L
V

 




 ,

 
3

cos 2

4

n

SV

p

L
V

 




 .

Signal generation is done by adding increments of time to the stresses 11 , 13 , 33 accordingly to

formulae:

011 2sin)(  ts ,

013 2cos)(  ts ,

033 2sin)(  ts .

8.4 Point source with an arbitrary moment tensor M

Moment tensor  ijmM is described by symmetric matrix of size 33 . Consequently it is defined

by 6 numbers.

Symmetric matrix can always be diagonalized by 3 rotations. The coordinate system in which the
M is diagonal is called the own, and the directions of the axes - the main ones. In this coordinate

system the tensor is defined by 3 numbers  0
11m ,  0

22m and  0
33m . The remaining values   00 ijm

(when ji  ).

In its own coordinate system, the tensor effect is described by three vector dipole directed along

the axes of the coordinate system and have intensity  0
11m ,  0

22m ,  0
33m . They are tensile or

compressive stresses.

To move from their own coordinate system to the external, we will use 3 turns with Euler angles,
i.e. will use the angles:  - precession angle,  - the angle of nutation and  - the angle of own

rotation.

Rotation of matrix     00
ijmM is executed by multiplying on rotation matrixes:

    TTTMTTTM 0 , (1)

where  denotes transposing,















 



100

0cossin

0sincos





T ,






















cossin0

sincos0

001

T ,














 



100

0cossin

0sincos





T .

In the program angles  ,  ,  are defined in relating dialog in tree steps:

1. Rotation around the OZ axis (i.e. in planes parallel to XY ) at an angle  from the axis OX to
the axis OY . The resulting line of nodes is stretched along OX axis.
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2. Rotation of the XY plane around the line ON of nodes by angle  . The axis OZ will also be

turned at angle  and take the position
 0OZ .

3. Rotation of a new position of XY plane around the  0OZ axis at an angle . The line ON of

nodes will turn and will assume the position  0OX . The axis OY will change the position to
 0OY .

Coordinate system       000 ,, ZYX is what we were looking for (own). Within this coordinate

system 3 numbers  0
11m ,  0

22m  и  0
33m are determined. Затем, осуществляется поворот по формуле 

Then, rotation is executed accordingly to the formula (1).

Initialization of the source is done by the program by to the stress tensor ij of increments   ijmts  ,

where  ts - is source signal.

8.5 Modeling of radiation, caused by shifts along faults in Tesseral 2.5D and
2D software

Currently methods of tracking of changes in reservoir properties using the recorded randomly
radiated, which are excited in the area of fracture (seismic emission) become widely used.

These techniques are based on the principle of interferometry. However predicting how to plan
your observing system and which processing procedure must be used is still quite complex task.

These issues can be resolved at simulating of the spontaneous emission from the fracture zone. The
simulation can be done either in 2.5D medium model case for arbitrary system of vertical fractures
or fissures 2D systems, or in 2D case for systems of fractures located within planes parallel to the

plane 31 XX or planes parallel to 32 XX .

In 2.5D case the fault can be presented as an arbitrary surface 0),,( zyxF , and the shift – by

some 3D-vector ),,( 000 zyxv . Method of simulating of the sources distributed on some surface

consists in splitting them line - cross-sections 0),,( zyxF S with a constant lateral offset

constyS  . All sources allocated along this line can be initialized simultaneously, but with different

signals. To obtain signals of reflected waves recorded by the receiver with side offset Ry , in the

Fourier transformation (the same formula as that of a point source) must be used distance

SR yy  .

If the surface point ),,( SSS zyxx belongs to the surface 0),,( zyxF and is the source, it is

necessary in this point to find a normal, which is the gradient of function ),,( zyxF :

)/,/,/( zFyFxFgradF n and the plane perpendicular thereto (the tangent to the

surface) and project vector ),,( 000 zyxv . To do this, vector
2

nn/n)(vvp  and then

normalized as pp/m  . We assume that along the tangent plane originated jump of displacements

  miu , leading to the source of the seismic moment (see Aki, Richards, Quantitative Seismology,

page 57).

The position of vertical plane fractures can be specified by the azimuth  of their normals

 cos ; sin ; 0 n . Along the fracture planes can occur of jumps of the fractures displacement
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    iii uuu , leading to sources of a seismic moment ijM type (see Aki, Richards, Quantitative

Seismology, page 57). Displacement jumps within the fault plane are described by vectors
    cos;sincos;sinsin au perpendicular to the normal n where  is the angle from the

vertical, with the amplitude a of the jump.

Denote ijpq as the elasticity tensor in the region of the fracture, break it down into square cells,

and apply modeling the radiation sources at the nodes of the grid.

According to this model, in each grin node there is a source of seismic moment   ijpqjipq nuM  .

For a fixed receiver  PPP xxxP 321 ,, the sources arranged along a vertical line constx S 1 , constx S 2

have the same side offsets SP xxx 222  relatively to the receiver P . Consequently, for the 2.5D

scheme sources on the vertical line can be taken into account if they generate signals

synchronously and at the step of the inverse Fourier transform  
2

22

k

xkjef  to recover the correct

signal at the reception point. Since the vertical lines of sources are located along a fixed

azimuth 090 and given the invariant properties of 2.5D medium in the direction 2x , it is possible

to project all the sources on the 1OX axis, and then properly take into account the side offsets from

the receiver at the synthesis of the final sum of the signal from the source (Fig. 1).

Thus, the synthesis of the signal caused by braking along the plane tangent to the fracture is
reduced to simulation of a set of sources of line type (as in the 2D simulation of emitting boundary

line) with the coordinates nxx ,...,1 and the subsequent accumulation for each receiver of incoming

events.

Synthesis of signals for each source on the line is executed by adding the increment of the signals
stresses )(tf multiplied by the seismic moments ijM :

 tfM ijij  ,

where  tf is the source signal.

2D modeling of emissions caused by shifts along faults, is a special case of discussed above 2.5D-
modeling. In this case it is necessary to assume that the fracture has a predetermined section

within plane 31 XX , and does not change in the OY axis direction. It is defined by a line-section

defined by the polygon. We need to find the normal and tangent to the line of the polygon at the
source and use the formula given above. Additional displacement vector determining is not
necessary

If the fracture is within the plane 31 XX (or rather the task is posed for the system of fractures with

a constant density in direction 2x ), it is necessary to perform the synthesis of signals from uniformly

distributed sources of seismic moments in the plane (Fig. 2). Here the displacement vector is not
needed.

Point seismic moments ijM are calculated in the same way as for 2.5D case, but for the vertical

plane 31 XX .



Wavefield Theory for Multiparameter Medium in Tesseral

31
© 2013 Tesseral Technologies -User Documentation -Advanced learning-

Moments ijM can be expressed as a linear combination of the nine possible pairs of forces pqL

represented by Figure 3.7 in the Aki Richards book. Implementation point source producing

pqL moment is reduced to form the excitation signal at the point using formulae pqpq L .

This task is much easier than task of forming the signals from the surface of the fracture. However,
such seismic sources can be used only for the wave field in the far zone of fracture of a small size
compared to the distance to the receiver.
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